Density of States and Delocalization for Discrete Magnetic Random Schrödinger Operators
نویسندگان
چکیده
Abstract We study discrete magnetic random Schrödinger operators on the square and honeycomb lattice. For non-random operator hexagonal lattice with any rational flux, we show that middle two dispersion surfaces exhibit Dirac cones. then derive an asymptotic expansion for density of states oscillations arbitrary flux. This allows us, as a corollary, to rigorously quantum Hall effect conclude dynamical delocalization close conical point under disorder. obtain similar results $\mathbb Z^2$-lattice weak fields, bottom top its spectrum.
منابع مشابه
Internal Lifshitz tails for discrete Schrödinger operators
We consider random Schrödinger operatorsHω acting on l2(Zd). We adapt the technique of the periodic approximations used in (2003) for the present model to prove that the integrated density of states of Hω has a Lifshitz behavior at the edges of internal spectral gaps if and only if the integrated density of states of a well-chosen periodic operator is nondegenerate at the same edges. A possible...
متن کاملThe Integrated Density of States for Random Schrödinger Operators
We survey some aspects of the theory of the integrated density of states (IDS) of random Schrödinger operators. The first part motivates the problem and introduces the relevant models as well as quantities of interest. The proof of the existence of this interesting quantity, the IDS, is discussed in the second section. One central topic of this survey is the asymptotic behavior of the integrate...
متن کاملExistence and Uniqueness of the Integrated Density of States for Schrödinger Operators with Magnetic Fields and Unbounded Random Potentials
The object of the present study is the integrated density of states of a quantum particle in multi-dimensional Euclidean space which is characterized by a Schrödinger operator with a constant magnetic field and a random potential which may be unbounded from above and from below. For an ergodic random potential satisfying a simple moment condition, we give a detailed proof that the infinite-volu...
متن کاملEdge currents and eigenvalue estimates for magnetic barrier Schrödinger operators
We study two-dimensional magnetic Schrödinger operators with a magnetic field that is equal to b > 0 for x > 0 and −b for x < 0. This magnetic Schrödinger operator exhibits a magnetic barrier at x = 0. The unperturbed system is invariant with respect to translations in the ydirection. As a result, the Schrödinger operator admits a direct integral decomposition. We analyze the band functions of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2021
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnab017